
Chapter 4

Continuity of Functions

Open sets, closed sets and related notions of sets in Rn are introduced in Section 1. Limits
and continuity of functions of several variables are discussed in Sections 2 and 3 respec-
tively. The study is parallel to that of functions of a single variable.

Caution: Beginning from this chapter, a generic point in Rn will be simply written as
x, y, u, v, etc rather than in bold letters x,y,u,v, etc.

4.1 Point Sets in Rn

In this section we define some notions concerning sets in Rn. Although they will become
fundamental in more advanced courses, these notions are introduced here mainly for
the ease of formulation of many subsequent results. We will study them thoroughly in
MATH3060 Mathematical Analysis III and MATH3070 Introductory Topology.

To kick off, we denote the n-dimensional open ball by

Br(x) = {y ∈ Rn : |y − x| < r} ,

and the closed ball by

Br(x) = {y ∈ Rn : |y − x| ≤ r} .

Whenever convenient, Br(x) will be written as Br, B(x), or even B. Let E be a non-empty
set in Rn. A point x ∈ E is called an interior point of E if there exists some r > 0
such that Br(x) ⊂ E. Roughly speaking, an interior point of E is a point in E that is
surrounded by points in E. A set is called an open set if it consists of interior points.
We define the empty set φ to be an open set. The complement of an open set is called
a closed set. Be cautious that there are sets which are open and closed at the same
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2 CHAPTER 4. CONTINUITY OF FUNCTIONS

time. Indeed, the entire space Rn is open as it contains all open balls and on the other
hand closed as it is the complement of the empty set. It follows that the empty set is also
closed as it is the complement of Rn. One can show that these two sets are the only open
and closed sets in Rn, but we do not need this fact.

A point x ∈ Rn is called a boundary point of the set E if for each r > 0, both
intersections Br(x)∩E and Br(x)∩CE where CE is the complement of E are nonempty.
As Br(x) ⊂ Bs(x), r < s, it suffices to have a sequence {rn} → 0 to fulfil this require-
ment. A boundary point of E may or may not belong to E, but is always surrounded by
points inside and outside E. The collection of all boundary points of the set E forms the
boundary of E and is denoted by ∂E.

Example 4.1. The ball Br(x) is an open set. For, let y ∈ Br(x). When y 6= x, 0 <
|y−x| < r. Setting ρ = r−|y−x| > 0, Bρ(y) ⊂ Br(x). When y = x, simply observe that

Br(x) ⊂ Br(x) . By a similar argument, the exterior of the ball CBr(x) = {y : |y−x| > r}
is also open. It follows from definition that the closed ball Br(x) is closed. Observing
that the union of open sets are still open, the sphere S = {y : |y − x| = r} which is the
complement of Br(x) ∪ CBr(x) is closed too.

Example 4.2. The intervals

(a, b), (−∞, b), (a,∞), a, b ∈ R,

are open sets in R. So are their unions. The intervals

{a} = [a, a], [a, b], (−∞, b], [a,∞) ,

are closed sets in R. So are their intersections. The boundaries of (a, b), [a, b], [a, b) and
(a, b] are {a, b}. In particular, the the boundary of the singleton {a} is {a} itself. It has
no interior points.

Example 4.3. Let D be the unit disk in R2, that is, D = {(x, y) : x2 + y2 < 1} and S
the unit circle S = {(x, y) : x2 + y2 = 1}. Consider

(a) E1 = D,

(b) E2 = D ∪ S,

(c) E3 = D ∪ (S ∩ {(x, y) : x > 0}) ,

(d) E4 = D ∩ {(x, y) : x, y ∈ Q} .

Then E1 is open, E2 is closed, E3 and E4 are neither open nor closed. The boundary of
E1, E2, E3 is S and the boundary of E4 is D ∪ S.
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The following result explains why a closed set is named closed.

Theorem 4.1. A set in Rn is closed if and only if it contains all its boundary points.

Proof. * ⇒) Let E be a closed set and x ∈ ∂E. If x ∈ CE, as CE is open, Br(x) ⊂ CE
for some r > 0 which shows that x cannot be a boundary point of E, contradiction holds.
Hence x must belong to E.

⇐) If E is not closed, then CE is not open. We can find some z ∈ CE such that
Br(z) ∩ E 6= φ for all r > 0. As Br(z) ∩ CE = {z} is never empty, z is a boundary point
of E. We have found a boundary point of E lying outside E.

We may reformulate this proposition in terms of sequences. That is, a nonempty set
E is closed if and only if for every {xn}, xn ∈ E, converging to some x ∈ Rn, x ∈ E. It is
a good exercise to provide a proof of it.

Theorem 4.2. For every set E in En, E ∪ ∂E is a closed set.

Proof. * First we claim that ∂(∂E) ⊂ ∂E, that is, any boundary point of ∂E is again a
boundary point of E. Let z be a boundary point of ∂E. Then Br(z) ∩ ∂E 6= φ for all
r > 0. Pick a point w ∈ Br(z)∩∂E. Since w is a boundary point of E and Br(z) is open,
there is some Bρ(w) ⊂ Br(z) such that Bρ(w) ∩ E 6= φ and Bρ(w) ∩ CE 6= φ. It follows
that Br(z) ∩ E 6= φ and Br(z) ∩ CE 6= φ, that is, z ∈ ∂E.

Now we prove the proposition by showing that the complement of E ∪ ∂E is open.
Let z ∈ C(E ∪ ∂E). We need to find a ball Bρ(z) ⊂ C(E ∪ ∂E) for some ρ > 0. Suppose
on the contrary this is not true, there is ρn → 0 such that Bρn(z) ∩ (E ∪ ∂E) 6= φ. If
Bρn(z) ∩ E 6= φ for infinitely many n, z is a boundary point of E, contradiction holds.
Therefore, Bρn(z) ∩ ∂E 6= φ for all large n, which implies z ∈ ∂(∂E) , but ∂(∂E) ⊂ ∂E.
We have arrived at the same contradiction again.

The closure of a set E is defined to be E ∪ ∂E and denoted by E. It is the smallest
closed set containing E. Again it is a good exercise to prove it.

4.2 Limits of Functions

In advanced calculus we are mainly concerned with functions defined on subsets of the
Euclidean space. Let E be a non-empty set in Rn. Recall that a real-valued function in E
is a rule to assign every point in E a unique real number. Whenever E and the function
are specified, E is called the domain of definition of the function.
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Consider a function f whose domain of definition is E ⊂ Rn. Let x be an interior
point or a boundary point of E so that Br(x) \ {x} ∩ E 6= φ for all r > 0. The function
f is said to have a limit at x if there exists a real number a such that, for each ε > 0,

|f(y)− a| < ε, ∀y ∈ Bδ(x), y 6= x ,

for some δ > 0. Alternatively, you may write

|f(y)− a| < ε, ∀y, 0 < |y − x| < δ .

When this happens, we write

lim
y→x

f(y) = a , or f(x)→ a as y → x .

We note that in the definition x may or may not belong to E, it is good as long as
Br(x) \ {x} intersects E for every r > 0. Furthermore, whether or not f is defined at x
does not matter. We are solely concerned with the limiting behavior of the function when
x is approached.

The limit of a function can also be described in terms of sequences. A sequence {xk}
in Rn is said to converge to x if for each ε > 0, there is some k0 such that |xk − x| < ε
for all k ≥ k0. When this happens, we use the notation xk → x, k → ∞, or simply
xk → x. The definition is the same as the one dimensional case, the only difference being
the absolute value is now replaced by the Euclidean distance.

Proposition 4.3 (Sequential Criterion for Limit). Let f be defined in E and x ∈ E.
The followings are equivalent:

(a)
lim
y→x

f(x) = a ,

(b)
f(xk)→ a whenever xk → x, xk ∈ E, xk 6= x.

Proof. *⇒) Let {xk} be a sequence in E converging to x and xk 6= x for all n. For ε > 0,
there is some δ such that |f(y)− a| < ε for all y ∈ E, y 6= x. For this δ, there is some k0
such that |xk − x| < δ for all k ≥ k0. It follows that |f(xk) − a| < ε for all k ≥ k0, that
is, f(xk)→ a as k →∞.

⇐) Assume on the contrary that f(y) does not converge to a. There exists some ε0 > 0
such that for each δ there corresponds some yδ satisfying |yδ − x| < δ but |f(yδ) − a| ≥
ε0. Taking δ = 1/k and xk = y1/k we see that the sequence {xk} converges to x but
|f(xk)− a| ≥ ε0.
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The following basic result, usually called the limit theorem, has been discussed in the
single variable case. It extends readily to the present situation.

Theorem 4.4 (Limit Theorem). Let f and g be defined in E ⊂ Rn and x ∈ E. Suppose
that

lim
y→x

f(y) = a , lim
y→x

g(x) = b .

Then

(a)
lim
y→x

(
αf(y) + βg(y)

)
= αa+ βb , α, β ∈ R,

(b)
lim
y→x

f(y)g(y) = ab .

(c)

lim
y→x

f(y)

g(y)
=
a

b
,

provided b 6= 0.

The following Sandwich Rule is a common tool in proving the existence of limits. It
can be proved as in the single variable case.

Theorem 4.5 (Sandwich Rule). Let f, g and h be defined in E ⊂ Rn and x ∈ E.
Suppose that

(a) h ≤ f ≤ g in E, and

(b) limy→x h(y) = limy→x g(y) = a.

Then limy→x f(y) exists and equals to a.

It is extremely useful to know that the existence of limit is preserved under composi-
tions with continuous maps.

Theorem 4.6. Let f be defined in E ⊂ Rn and x ∈ E. Suppose that

lim
y→x

f(y) = a .

Let Φ be a real-valued function defined on some open interval containing a and limu→a Φ(u) =
c. Then

lim
y→x

Φ(f(x)) = c .
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Proof. Let {xk} be a sequence in E \ {x} converging to x. For all large k, f(xk) is
well-defined. Then f(xk) is a sequence converging to a. By the sequential criterion
Φ(f(xk))→ c, the theorem follows.

Example 4.4. Consider the function

f(x, y) =
xy

x2 + y2
,

which is defined in R2/{(0, 0)}. We claim that it does not have a limit at the origin.
For, taking {(xk, 0)} → (0, 0), we see that f(xk, 0) is equal to 0 constantly. Therefore,
were the limit exist, it must be equal to 0. However, if we only (xk, yk), xk = yk, then
f(xk, xk) = 1/2 which is never equal to 0. We conclude that this function does not have
a limit at the origin. Indeed, in polar coordinates x = r cos θ and y = r sin θ, f becomes

f(x, y) = cos θ sin θ =
1

2
sin 2θ .

When the angle θ runs from 0 to 2π, the values of f cover the interval [−1, 1]. How can
it approach to a definite value?

Example 4.5. Consider the function

g(x, y) =
xy2

x2 + y2
, (x, y) 6= (0, 0) .

We claim that its limit at the origin exists and is equal to 0. For, we have∣∣∣∣ xy

x2 + y2

∣∣∣∣ ≤ 1

2
,

it follows that

0 ≤ |g(x, y)| ≤ |y|
2
.

By the Sandwich Rule
lim

(x,y)→(0,0)
g(x, y) = 0 .

For a function f defined near a point x ∈ Rn we can talk about iterated limit. Let us
restrict to n = 2 for simplicity. Let (x0, y0) be an interior point of E over which a function
f is defined. It makes sense to talk about the limit

lim
y→y0

lim
x→x0

f(x, y) and lim
x→x0

lim
y→y0

f(x, y) .

However, even if these limits exist and are equal, it does not mean

lim
(x,y)→(x0,y0)

f(x, y)
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exists. To illustrate this fact, look at the function in Example 4.2. It is easy to see that

lim
y→0

lim
x→0

xy

x2 + y2
and lim

x→0
lim
y→0

xy

x2 + y2
,

both exist and equal to 0, but

lim
(x,y)→(0,0)

xy

x2 + y2

does not exist. One must stay sober when working on analysis!

4.3 Continuity of Functions

Continuity of functions is closely related to the existence of limit. Let f be a real-valued
function defined on E and x ∈ E. It is continuous at x if (a) limy→x f(y) exists and (b)
the limit is equal to f(x). In other words, f is continuous at x if and only if for every
ε > 0, there is some δ > 0 such that

|f(y)− f(x)| < ε, ∀y ∈ E, |y − x| < δ .

We translate Proposition 4.3, Theorems 4.4 and 4.6 to three results concerning continuity.

Theorem 4.7 (Sequential Criterion for Continuity). Let f be defined in E and
x ∈ E. Then f is continuous at x if and only if for every {xk} ⊂ E, xk → x as k →∞,

lim
k→∞

f(xk) = f(x) .

Theorem 4.8. Let f and g be defined in E and continuous at x ∈ E. Then for α, β ∈ R,

(a) αf + βg is continuous at x,

(b) fg is continuous at x,

(c) f/g is continuous at x provided g(x) 6= 0.

A function is said to be continuous in a set if it is continuous at every point of the set.

Theorem 4.9. (a) Let f be defined in some E and continuous at x ∈ E and Φ a function
on some set containing f(x) and continuous at f(x). Then Φ ◦ f is continuous at x,
that is,

lim
y→x

Φ(f(y)) = Φ(f(x)) .
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(b) Let f be continuous on E and Φ continuous on E1 where f(E) ⊂ E1. Then Φ ◦ f is
continuous on E.

Now let us review some frequently used functions. First of all, a linear function is of
the form

f(x) =
n∑
j=1

αjxj + β , αj, β ∈ R .

It is a constant function when all αj’s vanish. It is clear from the definition that all linear
functions are continuous in Rn. Next, a quadratic function or a quadratic polynomial is
of form

f(x) =
n∑

j,k=1

αjkxjxk +
n∑
j=1

βjxj + γ , αij, βj, γ ∈ R ,

where at least one of the αjk 6= 0. To describe a polynomial we introduce the notation

xα = xα1
1 · · ·xαn

n , α = (α1, · · · , αn) .

A polynomial P (x) is a function in the form

P (x) =
∑

1≤|α|≤m

cαx
α , cα ∈ R, |α| = α1 + · · ·αn.

The degree of a polynomial is the highest combined power with non-zero coefficient ap-
pearing in its expression. For instance, in the following polynomials

P1(x, y) = x− 6xy + x2y − 17y3 , P2(x, y, z) = 2− x− y + xyz2 − x3z ,

their degrees are 3 and 4 respectively. A repeated application of Theorem 4.8 shows that
all polynomials are continuous in Rn.

Next, a rational function R(x) is the quotient of two polynomials, that is,

R(x) =
P (x)

Q(x)
, where P,Q are polynomials , Q 6= 0 .

The function R is defined in the set where Q is non-zero, that is, {x ∈ Rn : Q(x) 6= 0}.
Consider the examples

R1(x, y) =
x− xy + x2y

x− y + 1
, R2(x, y, z) =

2− xyz
1 + x2 + y2 + z2

, R3(x, y) =
x2y − xy2

x
.

The domain of definition of R1 is the set {(x, y) : x − y + 1 6= 0}. On the other hand,
as the numerator of R2 never vanish, its domain of definition is R3. Finally, the domain
of definition of R3 is {(x, y) : x 6= 0}. We observe that after cancelation, the expression
defining R3 is equal to xy − y2 which is well-defined in the entire space. We may say R3
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extends to be a function in R2. However, the domain of definition of R3, as it stands, is
still the open set {(x, y) : x 6= 0}.

In calculus we encountered many commonly used continuous functions, some of which
are

• The power function t 7→ ta, a ≥ 1, whose domain of definition is [0,∞).

• The radical function t 7→ ta, a ∈ (0, 1) whose domain of definition is [0,∞).

• The exponential function t 7→ et whose domain of definition is R.

• The logarithmic function t 7→ log t whose domain of definition is (0,∞).

• The trigonometric functions sin t, cos t whose domain of definition is R and tan t
whose domain of definition is R \ {(n+ 1

2
)π, n ∈ Z} .

• The inverse trigonometric functions arcsin t, arccos t, and arctan t whose domains of
definition will be described when needed.

• The absolute value function t 7→ |t| whose domain of definition is R.

We will call these functions elementary functions. Using them as Φ in Theorem 4.9,
we can form compositions among these functions and the rational functions to produce
many examples of continuous functions. Let us consider two examples.

Example 4.6. Consider

log

(
xy

x2 + y2

)
.

We need to determine the set where this formula defines a function before considering its
continuity. Indeed, the logarithmic function is defined and continuous on (0,∞). There-
fore, this function is well-defined in the open set D ≡ {(x, y) : x, y > 0, or x, y < 0}, that
is, the first and the third quadrants. By Theorem 4.9 it is continuous in D.

Very often we encounter the situation where a function is given in an explicit form
but its domain of definition is not specified. When this happens, it is understood that
the domain of definition is taken to be the largest set in which the formula makes sense.
It may be called the “natural domain” of the function.

Example 4.7. Determine the natural domain of the function given by the formula√
sin(x2 + y2) .
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Well, we note that the square root function is defined only on [0,∞), so we need to ensure
sin(x2 + y2) ≥ 0. After examining the sign of the sine function, we conclude that the
natural domain of this formula is

D ≡ {(x, y) : x2 + y2 ∈ [2nπ, (2n+ 1)π], n ≥ 0 }.

By Theorem 4.9 it is continuous in E.

The following result describes the preimages of open intervals under a continuous func-
tion are open sets. This provides an efficient way to determine whether a set is open or
not .

Theorem 4.10. Let f be continuous in Rn. Then for every c ∈ R, the sets

{x : f(x) < c}, {x : f(x) > c} ,

are open, and the sets
{x : f(x) ≤ c}, {x : f(x) ≥ c} ,

are closed. As a result, the level set {x : f(x) = c} is closed.

Proof. * Let F = {x : f(x) ≥ c}. Let {xk} be a sequence in F and xk → x, so fk(x) ≥ c
for all n. Letting k →∞,

f(x) = lim
k→∞

f(xk) ≥ c ,

by continuity. We conclude that x ∈ F , that is, F is a closed set. Its complement
{x : f(x) < c} is therefore open. The other case follows after replacing f and c by −f
and −c respectively. Finally, observe that

{x : f(x) = c} = {x : f(x) ≤ c} ∩ {x : f(x) ≥ c}

and the intersection of closed sets is closed, this level set is a closed set.

So far we have been considering the continuity of real-valued functions. The concept
can be extended to any function defined in a subset of some Rn to Rm. Indeed, let f(x) =
(f1(x), f2(x), · · · , fm(x)) be a vector-valued function where fj is the j-th component of
f . Then f is said to be continuous at x if and only if fj is continuous at x for all j.
Alternatively, one can say that

f : E ⊂ Rn → Rm ,

is continuous at x ∈ E if, for every ε > 0, there is some δ such that

|f(y)− f(x)| < ε , ∀y ∈ Bδ(x) .

With this definition, Theorem 4.7, Theorem 4.8(a) and Theorem 4.9 all hold in the vector-
valued setting. In particular, Theorem 4.9(b) asserts that composition of functions pre-
serves continuity.



4.3. CONTINUITY OF FUNCTIONS 11

Comments on Chapter 4.

Examples of functions of several variables can be found in the references listed below.
Study some of them, and especially familiarize yourself with their graphs.

Supplementary Readings

2.3-2.7 in [Au]. 14.1 and 14.2 in [Thomas].


